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ABSTRACT

Richards’ equation, which models the flow of liquid through unsaturated
porous media, is highly nonlinear and difficult to solve. Steep gradients in
the field variables require the use of fine grids and small time step sizes. The
numerical instabilities caused by the nonlinearities often require the use of
iterative methods such as Picard or Newton iteration. These difficulties re-
sult in large CPU requirementé in solving Richards’ equation. With this in
mind, adaptive and multigrid methods are investigated for use with nonlinear

equations such as Richards’ equation. Attention is focused on one-dimensional

transient problems.

To investigate the use of multigrid and adaptive grid methods, a series
of problems are studied. First, a multigrid program is developed and used to
solve an ordinary differential equation, demonstrating the efficiency with which
low and high frequency errors are smoothed out. The multigrid algorithm and
an adaptive grid algorithm is used to solve one-dimensional transient partial
differential equations, such as the diffusive and convective-diffusion equations.
The performance of these prograﬂxf@@ compared to that of the Gauss-Seidel
and tridiagonal methods. The adaptive and multigrid schemes outperformed
the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method.
The adaptive grid scheme solved the problems slightly faster than the multi-
grid method.
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To solve nonlinear problems, Picard iterations are introduced into the
adaptive grid and tridiagonal methods. Burgers’ equation is used as a test
problem for the two algorithms. Both methods obtain solutions of compa-
rable accuracy for similar time Vijnrcrements. For the Burgers’ equation, the
adaptive grid method finds the solution approximately three times faster than
the tridiagonal method. Fina.lly,i bgtﬁbfchemes are used to solve the water
content formulation of the Richards’ equation. For this problem, the adaptive
grid method obtains a more accurate solution in fewer work units and less
computation time than required by the tridiagonal method. The performance
of the adaptive grid method tends to degrade as the solution process proceedé

in time, but still remains faster than the tridiagonal scheme.
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Nomenclature

English

Fh

fk
GH

h

k+1
I

k
I

k+1
Iy

coefficient relating volumetric water content and tension

- norm of the residual function

- residual norm on grid level &

- residual norm obtained from the adaptive grid method

- norm of the residuals prior to last relaxation

- original forcing function (right hand side)

- discrete approximation of the original forcing function
on a coarse grid H

- discrete approximation of the original forcing function
on a fine grid &

- discrete forcing function on grid level &

- denotes a coarse, uniformly spaced grid

- denotes a fine, uniformly spaced grid

- uniform spacing between nodes on a coarse grid

uniform spacing between nodes on a fine grid

- linear interpolation from grid level k to b +1

- interpolation (restriction) from grid level £ + 1 to k
- cubic interpolation to the next finer grid

- positive integer denoting a specific node
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J - positive integer used in identifying time steps

J - number of time increments used for ‘local time refinements’
K - hydraulic conductivity

I, - saturated hydraulic conductivity of soil

k - positive integer used to identify a grid level

L - differential operator

L - discrete differential operator on a coarse grid H

L* - discrete differential opefator on a fine grid h

L - size of the domain

l - finest grid level that has been visited by the algorithm

m - positive integer denoting the finest grid level

m - order of differential equations being solved

m - model parameter used with problem #5

n - number of nodes on the grid of interest;

) - model parameter used with problem #5

P - order of the approximation scheme

p - mesh size ratio between two adjacent grid levels

q - flux boundary condition

r - number of relaxation sweeps on each finer level per multigrid cycle
rh - residual function (vector of residual values)

r - residual function on grid level &
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Se

toler

tolerce

At

U u(xr)

Uh

HH,Eh

Azj—1

residual function on grid level k prior to the last relaxation sweep

water retention curve

time

convergence criteria used in the nonlinear adaptive grid algorithm
to determine whether more Picard iterations are needed

tolerance value used with the nonlinear tridiagonal method
to detect a premature convergence of the residual onto
a value greater than that desired

time increment

true solution

discrete approximation of the true solution on a coarse grid H

discrete approximation of the true solution on a fine grid A

field variable for problems #1 through #4

current approximate of the solution on a coarse grid H

current approximate of the solution on a fine grid h

approximate solution prior to the previous relaxation

error present in the approximate solution u

errors present prior to the last relaxation

spatial dimension

distance between nodes

distance between nodes on grid level k¥ — 1
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Greek
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multigrid ‘switching parameter’ used to determine the convergence
criteria for the finest level visited

model parameter used in problem #5

multigrid ‘switching parameter’ governing the convergence criteria
on coarser grid which have been previously visited

convergence criteria

‘stopping factor’ used to detect an unacceptable slowing of the
convergence rate

volumetric water content

residual water content

convergence rate

smoothing factor

spectral convergence rate

saturated water content

estimate of the local truncation error

relative (local) truncation error

current estimate of the truncation error

relative truncation error on level £ — 1, node ¢
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Chapfer 1

Introduction

1.1 Background

Many partial differential equations exist which are very difficult to solve
analytically. The solution to such problems can often be found by numeri-
cal methods, such as through the as.ré”of finite differences. The use of finite
differences leads to systems of linear or nonlinear algebraic equations. Solv-
ing the resulting system of equations by conventional relaxation methods is
CPU intensive, especially for large systems. The application of the multi-level
technique to conventional relaxation methods accelerates the rate at which
they converge to the solution. As a result, the multigrid technique has found
widespread use for the solution of mulwtri-dimensiorrlal partial differential equa-
tions which arise in computational fluid dynamics and physics. A feature of
the multigrid technique is the ease by which it can be modified to handle adap-

tive grids, which are ideally suited for problems with steep local gradients in

the state variables.

Like multigrid methods, adaptive grid algorithms also use a sequence of
finer and finer uniform grids to solve a problem,‘but, may restrict the finer
grids to small portions of the domain. This method seeks to identify those
portions of the domain requiring the use of the finer grids in order to achieve

1



a desired accuracy, and then solves the problem within these regions using
the finer grids. Such regions often occur in problems which exhibit steep
gradients in the solution [Hedstrom and Rodrique, 1982]. Thus, the adaptive

grid method appears to be well suited toward finding the solution to problems

possessing these steep local gradients.
1.2 Scope

The aim of this work is to first investigate the use of the multigrid
and adaptive grid techniques [Brandt, 1977] for finding the solution to one-
dimensional, differential equations which may contain steep local gradients.
Then, the most promising method is adapted to find the solution to two
one-dimensional nonlinear problems. The nonlinear problems are the viscous
Burgers’ equation, which contains a moving front with steep gradients in the
solution; and, the water content formulation of the Richards’ equation mod-
elling one-dimensional liquid flow in unsaturated soils. The Richards’ equation
is highly nonlinear and also possesses solutions which contain moving fronts

with very steep gradients.

The application of the multigrid algorithm is presented first for a one-
dimensional steady state diffusion prolﬂem. It is then expanded to include
one-dimensional transient problems. The time-dependent problems are also
solved using the adaptive grid method. The adaptive grid technique is then

applied toward solving the nonlinear Burgers’ equation.

2



The resulting algorithms are verified by comparing their results to those
obtained using other numerical methods. Where possible, the numerical solu-
tions are also verified by comparison to the analytical solutions. The efficiency
of the algorithms are determined by comparing the CPU time needed to solve
the problem to that needed for a conventional relaxation method and direct
solver.

Finally, the adaptive grid method is applied to the nonlinear one-
dimensional water content formulation of the Richards equation. The adaptive
grid method has not previously been applied to this problem. The adaptive
grid solution is compared to that obtained using a tridiagonal method em-

ploying Picard iterations.
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Chapter 2

Literature Review

Usually, when solving a Partial Differential Equation (PDE) by numerical
means, one first discretizes the problem onto a fine grid. This often results in
a very large system of simultaneous algebraic equations. The resulting system
of equations is then solved using an iterative solver. Such a method is easy to
implement into a computer program, but iterative solvers used in this manner
do have some problems. One such problem is the slow convergence of the
solution due to inefficiencies in resolving low frequency errors (errors with a
long wavelength). Another is the lack of interplay between the discretization
and the solution processes which overlooks useful information [Brandt, 1977].
By performing a Fourier analysis of the problem on a fine grid, it becomes
evident that high frequency errors are quickly resolved in just a few relax-
ation sweeps and that the low frequency errors converge very slowly. After
three relaxations the high frequency error terms are reduced by almost an
order of magnitude [Brandt, 1977, 1979]. This leads to the multigrid method,
which discretizes the problem onto a sequence of coarser and coarser grids.
The multigrid method is a general technique by which the performance (in
terms of CPU time) of an iterative (conventional) solver is improved. Multi-
grid techniques normally solve an elliptic PDE in O(n) operations whereas

4
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iterative solvers such as Gauss-Seidel require O(n?) operations [Brandt, 1977;

Wesseling, 1982].

The basic multigrid method is a systematic scheme uniting the solution
process on several grid levels by combining relaxation sweeps with corrections
involving the current estimates of the solution on both the fine and coarse
grids. The coarse grids are used to provide the finer grids with an estimate
of the solution containing the low frequency information, which is difficult
(computationally expensive) to obtain on the fine grids. The fine grids are
used to resolve the high frequency errors in the solution, which are then used
to improve the coarse grid solution. Thus, the interactions between the fine

and coarse grids serve to improve the performance of an iterative solver.

One basic multigrid method is named the Coarse Grid Correction (CGC)
scheme. This scheme begins by solving the problem of interest only on the
finest grid, with the coarser grids used to solve residual equations. The coarse
grid solution to the residual equations is then used as a correction to the
solution on the finer grids [Alcou'ffé'et al., 1981; Brandt, 1977; Jesperson,
1984]. The CGC method is primarily for linear problems and cannot be applied
to composite (or adaptive) grids. Extending CGC for use with nonlinear

problems is “messy” [Brandt, 1979, 1982].

Another class of multigrid methods are the Full Multigrid (FMG) algo-

rithms. These methods discretize and solve the problem of interest onto all
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grid levels. They begin the solution process on the coarsest grid by obtaining
the first approximation to the solution. The full multigrid methods have some
very attractive features as they can solve a problem to the level of truncation
errors and tend to be very forgiving of small mistakes. For example, concep-
tual or programming errors often just slow down the rate of convergence and

have no effect on the actual solution [Brandt, 1982].

One such commonly used method is the Full Approximation Scheme
(FAS) which is also referred to as the Full Approximation Storage method.
This scheme is similar to CGC except that the problem of interest is solved
on all grid levels. As before, the coarse grids are used to correct the solution
on the finer grids. FAS also differs in that the fine grid solution is used to
modify the coarse grid forcing function so as to coincide with the fine grid
solution. The full approximation scheme has several advantages and provides
a general algorithm for both linear and nonlinear problems. When used to
solve nonlinear problems, global linearization is not required. The only lin-
earization needed is the local linearization employed by the relaxation routine.
FAS can also handle “accommodative” grids (adaptive and composite grids)
and is easily modified to do so. It also gives a good estimate of the truncation
error which is useful in defining stopping and adaptive grid criteria [Brandst,

1977, 1979, 1982].

Adaptive and composite grids are used to reduce the computation time

6



ST

required to solve certain problems and lead to non-uniform grids on a global
scale. “Non-uniform resolution is needed in many, perhaps most, practical
problems” [Brandt, 1982]. Both composite and adaptive grids may be viewed
as a series of uniform grids which do not necessarily extend over the entire
domain. The finer grids are needed near singularities, non-smooth boundaries,

wave fronts, shocks, etc.

One can define composite grids as a union of uniform subgrids, usually
positioned such that every node on the coarse grid corresponds to a node
(usually every other node) on the next finer grid. It is important to note that
these subgrids do not have to cover the entire domain, and that a subgrid may
extend over a portion of the domain covered by another subgrid. Subgrids in
different subdomains may also have different levels of refinement (node spac-
ing). This method is flexible in that local grid refinement is done by extending
subregions. Use of composite grid levels as a multigrid sequence yields an ef-
ficient solution process [Brandt, 1979]. One problem with this approach 1s
that the composite grids need to be constructed prior to beginning the solu-
tion process. Sincé these grids remain fixed throughout the solution process,
a-priori knowledge of the problem and solution is required to adequately form

the composite grids.

Adaptive grids are similar to composite grids which use a specified number

of uniform grids. The main difference is that with adaptive grids, an open

7
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ended éequence of uniform grids is employed in order to find the solution. This
allows for the addition of finer grids (or subgrids) as needed. The subgrids are
again constructed as a sequence of uniform grids (much like that used with
multigrid). The finer grids are used in those portions of the domain requiring
additional refinement. These regions are identified by comparing the local
truncation errors (as estimated by the program) to some desired convergence
criteria. Using the adaptive grid levels as a multigrid sequence, provides an
efficient solution process with relaxation taking place only on uniform grids
and local uniform subgrids. Since the FAS scheme combines the full solution
(and not jugt a correction term) on all grid levels and provides a good estimate
of the truncation error, it is especially well suited for use with adaptive grids,
resulting in a “nearly optimal discretization scheme” [Brandt, 1973, 1977,

1979, 1982].

A multigrid method with adaptive grids applied to a one-dimensional
problem is presented in Brandt, 1973. Adaptive multigrid algorithms com-
bine the advantages of both methods. The only apparent disadvantage is the
more complex programming involved in incorporating adaptive grids into the

multigrid technique.

The multigrid process is useful for solving time-dependent problems. An
easily implemented transient method is given in the paper by H. Lee and R.
Meyers, 1980. In their paper, a multigrid scheme similar to the FAS method

8



(presented in Brandt, 1077) is extended to include transient partial differential
equations. With this scheme, the spatial terms are discretized onto a series
of coarser and coarser uniform grids, while the transient terms are discretized
using backward finite difference and a fixed time increment. The multigrid
method is then used to solve the problem (at each time step) one time step at

a time.

A similar approach (using a fixed time step) for composite grids is pre-
sented by Heroux and Thomas, 1989. An extension of this method is to use
local time stepping. The local time refinements are added in those subregions
covered by fine grids. If the coarse grid time step is At, then the fine grid
time step may be defined as Atj;,e = At/ , where j is a positive integer de-
noting the number of fine grid time steps that the coarse grid time increment

is broken up into [Heroux and Thomas, 1989].

A one-dimensional adaptive grid method usin-g local time stepping is given
by Hedstrom and Rodrique, 1982. The algorithm presented is recursive and
thus may have several levels of refinement in the time domain. In addition,
at any time level there may be many fine grids. An important advantage
of using local time refinements with the adaptive grid method is that the

resulting algorithm can simultaneously track a number of wave fronts.

The multigrid method is used in solving the convection-diffusion equation
with strong convective effects by G. F. Carey and Pandanami, 1989. For these

9
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problems, the cell Peclet (or Reynolds) number restricts the size of the node
spacing on the coarse grids. If this condition is violated more than once, the
multigrid method fails. Also, if the mesh is too coarse, Jacobi and Gauss-Seidel
relaxation methods will diverge. The usual way to get around these problems
is to use an upwinding scheme or to add artificial dissipation. Additionally,
two alternative approaches to overcome these problems, a fine to coarse grid
condensation and a local elliptic projection method, aré presented by Carey

and A. Pandanami, 1989.

10
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Chapter 3

Theory

The FAS multigrid technique is presented in the first part of this chapter.
A finite difference formulation of a lingar problem on a uniformly spaced grid
is considered in order to show how an iterative solver may benefit from the
use of coarser grids approximating the same problem. With this in mind,
the convergence rate is introduced and used along with local mode analysis
to examine the effects of the solver and various grids on the errors in the
approximated solution. Next, the criteria for switching from one grid level
to another is discussed, followed by the interpolations used when transferring
information between levels. The coarse to fine grid correction and a fine to
coarse grid correction are presented along with a summary and flowchart of

the multigrid method.

Then, the adaptive grid method is introduced. Like the multigrid scheme,
the adaptive grid algorithm uses several grid levels to solve a problem. This
method solves the problem over the entire domain on a coarse grid with the
finer grids being confined to those portions of the domain which have not
satisfactorily converged on the coarser grids. The convergence criteria, which
is compared to the truncation error, is then discussed along with the method
used to estimate the truncation error. This is followed by a presentation on the

11



use of truncation error to identify the portions of the domain requiring further
refinement, and the construction of the adaptive subgrids. Also included is a
flowchart of the adaptive grid method.

The final portion of this chapter discusses the application of the algo-
rithms to transient problems. The discretization of the time domain is ad-
dressed, followed by a description of how the solution for the new time step is

estimated.

3.1 FAS Multigrid Method

Suppose we have a problem of the form
LU(z) = F(a), (3.1.1)

where L is a linear differential operator, U(z) is the true solution, and F(z) is
the forcing function or right hand side. Discretizing the problem using finite

differences on a uniformly spaced grid G" gives
Lhyh = Fh, (3.1.2)

where U" is the discrete approximation of the true solution and & is the
uniform spacing between the nodes. Boundary conditions are also discretized
and included into the finite difference equations. Equation (3.1.2) is a set of
simultaneous algebraic equations and can be solved by use of an iterative or
direct solution method. Direct solution methods are not usually used because
they are generally more complex and slower than other methods, such as

12



iterative schemes. An estimate of the solution is required in order for an
iterative method to work. How fast the iterative method converges is partially
dependant upon the accuracy of the estimate provided. The better the initial
estimate is, the faster the method converges. A good initial approximation
may be obtained by solving the same problem using a coarser grid in which the
nodal spacing (Az) is larger. This results in a set of simultaneous algebraic

equations

LM = FH ongrid GH (3.1.3)

which is smaller than the previous set. The superscript H denotes a coarser
grid (larger grid spacing but a smaller number of unknowns) than that denoted
by h. Usually the spacing between nodes on the coarser grid is twice that of
the next finer grid. As before, this problem can be solved using an iterative
solver. An initial estimate of the solution is again required. For the problem
on GH a still coarser grid can be utilized in a similar manner, and so forth
[Brandt, 1977]. Therefore, the coarser grids are used as a means of providing
a better estimate of the solution to the finer grids in order to speed up the
convergence.

The convergence rate y is the rate at which the errors in the state variable
are reduced per iteration. Defining the estimate to the true solution on G* as

u?, the errors before (7) and after (v) an iteration can be written as

7=U"-7" and v=U"—uh (3.1.4a,b)

13
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The convergence rate may be expressed as

vl

= Hﬂu (3.1.5)

and considered to be the factor by which the errors are reduced per iteration
sweep. After a few iterations the convergence rate approaches p =1 — O(h?),
which is a very slow rate. So, to reduce the errors an order of magnitude,
O(h™?) relaxation sweeps must be made [Brandt, 1977]. This difficulty in
reducing the low frequency errors is why many iterative solvers are often slow
to converge.

To illustrate this effect, the Gauss-Seidel method was used to solve the
following problem containing both high and low frequency (short and long

wavelength) terms using a grid consisting of 129 nodes.

2
— = —n?sin(rz) — (216—;) sin(267z), (0<z<1), u=u(z) (3.1.6)

with the boundary conditions u(0) =u(1)=0.

The analytical solution to (3.1.6) is
u(z) = sin(wz) + 0.1sin(267z) . (3.1.7)

As is shown in Figure 3.1.1, the high frequency terms are quickly resolved
(within about 10 iterations) while the low frequency terms take a very long

time (22,541 iterations) to converge.

14
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From this viewpoint, the goal of the multigrid technique is to reduce the
lower frequency errors on the coarser grids while reducing the higher frequency
errors on the finer grids. The convergence rate of the higher frequency error
terms can be found by expanding the error into its Fourier components.

The error terms v contain only those errors that are visible on the current
grid. Those error components whose frequencies are too high to be resolved
on the grid being used appear as low frequency errors. In Figure 3.1.2, a high
frequency curve is presented with the grid nodes identified. As the grid is too
coarse (the nodes are too far apart) to show the true shape of the curve, the
actual curve as viewed from the grid appears to be of a lower frequency than
what it actually is. This effect is referred to as aliasing.

The smoothing factor & is the worst rate of convergence for the high
frequency errors visible on the current grid level [Brandt, 1982; Jesperson,

1984]. The smoothing factor is given by

max Rk

pr<9<n u(9)y, where p= TR (3.1.8)

and u(J) is the spectral convergence rate [Brandt, 1977]. The superscript k
refers to a fine grid, while the subscript £ — 1 denotes the next coarser grid
level. The relation p is the “mesh size ratio” and usually is about 2:1 . The 2:1
ratio should always be used, as it is nearly optimal and is the most convenient
and economical ratio for use in the interpolation process [Brandt, 1977]. The

smoothing factor can be found by using local mode analysis on the Fourier
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components of the error. From the smoothing factor “one can explicitly cal-
culate the smoothing rate |log ]! for any given difference equation with any
given relaxation scheme” [Brandt, 1977]. The smoothing rate is the number
of relaxation sweeps needed to reduce the high frequency errors an order of
magnitude. For relaxation methods, the smoothing of high frequency terms
can be very reasonable. For example, a Gauss-Seidel sweep over Poisson’s
equation gives the smoothing factor 7 = 0.45 and thus, a smoothing rate of
2.86 . This implies that the high frequency errors are reduced by an order of
magnitude after about 3 iterations.

In general, when further relaxations at the current level lose their effec-
tiveness, execution of a multigrid algorithm transfers to another (either finer
or coarser) level of discretization. A set of criteria is needed to detect when to
change over to another grid and to determine whether that grid needs to be
a finer or a coarser one. This criteria is partially based on residuals which is
a measure of the errors present in the estimate of the solution. By rewriting

(3.1.4b) as

Ul =P 40", (3.1.9)

and then introducing (3.1.9) into (3.1.2) and rearranging terms gives the
“residual equation,”

rh = Pt — LM = LRt (3.1.10)

h

The residual function 7" is a vector containing several values. It would be
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much easier to work with a single scalar value, which is a measure of the

residuals. This is achieved by taking the norm of the residual function,
ek =¥, (3.1.11)

where % is an integer value denoting the current discretization level.

To check for convergence at the current level, the measure of the residuals
e* is compared to a tolerance €. The tolerance ¢* is designed such that eF < €*
signals convergence [Brandt, 1979]. When e* < €*, the problem has converged
at the current level and a switch to the next finer grid is made. If the current
level happens to be the finest level, then the multigrid procedure is halted as
the desired solution has been found.

If the tolerance criteria is not met, the decision to either go to a coarser
level or remain at the current one needs to be made. If the convergence rate
on the current grid level is slow (high frequency errors visible on this level have
been smoothed), a switch to the next‘ coarsest grid is made. The slowing of
the convergence rate is detected by comparing the reduction in the residuals

to a “stopping factor” n as shown in the equation below:

>n

— b

(3.1.12)

1T 1)

where € is the norm of the residual at the previous iteration. Aslongas(3.1.12)
is not satisfied, further efficient error reduction is achieved by additional relax-
ation sweeps at the current discretization level. When the inequality is met,
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relaxations on the next coarser grid become more effective and the algorithm
switches to the coarser grid. An appropriate value for n may be taken as an es-
timate of the smoothing factor p or found by trial and error. Good relaxation
methods have a smoothing factor of about 0.5 [Brandt, 1979]. Increasing the
value of n delays the transfer of execution to a coarser grid in favor of continued
relaxations on the current level. “Generally the overall multi-grid convergence

rate is not very sensitive to increasing #” [Brandt, 1977].

A point to remember is that on the coarsest grid, the problem is solved
to the given tolerance ¢ even though the convergence rate may slow down,
and thus, require several (less efficient) relaxations at this level. This extra
computational work is inexpensive as the coarsest grid contains relatively few
unknowns, especially when compared to the finest grid. The use of a direct
solver (which solves the problem to the level of truncation error) may be used
in place of the relaxation method for the coarsest level to eliminate unwanted

relaxation sweeps.

In changing levels, information about the solution must be transferred to
another grid. This is done by some type of interpolation process which depends
upon whether the destination is a coarser or finer grid. The interpolation
process is designated by the operator I, ,’f“, where the subscript denotes the
current grid level and the supersérrii)rt denotes the grid level onto which the

interpolation is being made. Interpolating from a coarse grid to a fine grid
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is referred to as prolongation; while interpolation from a fine grid to a coarse

grid is called restriction.

When interpolating to a finer grid, the order of the interpolations must
be at least equal to the order of the differential equations (/) being solved
[Brandt, 1977, 1979, 1982]. Using lower order interpolations may result in
the éreation of significant high frequency errors which will require additional
relaxations. Although higher order interpolations can be used, they are no
more effective than the minimal order except for a few special cases [Brandst,
1977]. Thus, minimal order interpolations should generally be used, as they
are less complex and just as effective as higher order interpolations. One
exception to this rule is when a grid is visited for the very first time. In this
case, the interpolation order should be at least 1 + p, where p is the order of
the approximation scheme [Brandt, 1979]. This higher order interpolation is
denoted by If“ . For a second order differential equation discretized with a
second order approximation, the appropriate polynomial interpretations (I,}f+l

and ]If“) are linear and cubic.

For the purpose of describing the interpolation processes, it is assumed
that the information being transferred between grids is the estimate of the

solution.

The linear interpolation process (If‘*'l) is depicted in Figure 3.1.3 . The
process is a two-part procedure where the estimate of the solution (or what-
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ever is being transferred) on the coarse grid nodes is first copied onto the
corresponding fine grid nodes. Then, for the fine grid nodes without a corre-
sponding coarse grid node, the solution from the two nearest coarse grid nodes
is averaged.

The cubic interpolation process (I[f“) is shown in Figure 3.1.4 . As be-
fore, the interpolation is a two-part process where the estimate of the solution
is first copied from the coarse grid nodes to the corresponding fine grid nodes.
For those fine grid nodes without a corresponding coarse grid node, a weighted
average is obtained from the four nearest coarse grid nodes.

The process of interpolating to a coarser grid (restriction) is denoted by
the operator I£+l . The restriction process is accomplished by either direct
injection or a weighted scheme.

In order to use direct injection, the nodes on G must be a subset of G*,
which is usually the case. With direct injection, the values on fine grid nodes
corresponding to coarse grid nodes are simply copied onto the coarse grid as
depicted in Figure 3.1.5 . Direct injection is well suited for use with problems
containing very steep gradients. Even though direct injection is both fast and
easily implemented, it does not transfer all of the available information present
on the fine grid.

The full weighting scheme, though, does use information present on all

fine grid nodes and so, preserves some of the high frequency content of the
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finer grid. It does this by employing a weighted average as shown in Figure
3.1.6 to transfer fine grid information onto a coarser grid.

When transferring to a finer level which has already been visited, a “coarse
grid correction” step is performed. The correction is designed so as to include
the most recent low frequency information in the solution from a coarse grid

onto the next finer level,
uf = uh 4 IF(WFT - IR (3.1.13)

In transferring to a coarser grid, it is desired to approximate the current
fine grid solution on the coarse grid. This is done by calculating a static
residual on the fine grid and interpolating it down to the next coarser gird

where it is added to the existing coarse grid forcing function to give
FE= LR - I (T - LR A, (3.1.14)

Such a modification allows for the solution to 1_:he coarse grid equations to
coincide with the fine grid solution [Brandt, 1979].

A flowchart of a multigrid method, the Full Approximation Scheme (FAS)
is shown in Figure 3.1.7 . First, the problem (already discretized onto a
sequence of grids) on the coarsest grid is solved by the use of either an iterative
or a direct solver. Second, the solution is interpolated to the next finer level
using a higher order (cubic) interpolation. Third, residuals (e*) are computed
as a relaxation (Gauss-Seidel) sweep is performed at the current level. The

residuals are then used to determine if the solution has converged.

I\
(91
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Figure 3.1.7: Multigrid Flowchart
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If convergence is detected (e < €¥), the multigrid algorithm proceeds to
the next finer level or it is terminated if the current level is the finest. If this
finer level has been visited before, the coarse grid correction step previously
described is performed to correct the fine grid solution.

If the solution has yet to converge, the convergence rate (e¥ /g¥) is checked.
If this rate is satisfactory (larger than ), then an additional relaxation sweep
at the current level is done by returning to the third step. If the convergence
rate is too slow, the solution is interpolated (restricted) down to the next
coarser level where a fine to coarse grid correction is performed on the coarse
grid forcing function. After the correction is made, execution returns to the
third step to begin the relaxation loop for the coarser grid.

The parameters «, é, and 7 (included in the multigrid flowchart, Figure
3.1.7) are referred to as “switching parameters” and assist in guiding the flow
of the algorithm. These parameters range in value from 0 to 1 . The stopping
factor n was discussed earlier in this chapter.

The parameter § governs the convergence criteria on coarser grids. After
interpolating to a coarser grid, the most recent residual error norm (from the
k+1

finer level) e is reduced by a factor of é to obtain the convergence criteria

€ for the current grid level, thus
¥ = ettt (3.1.15)

The parameter ¢ is designed such that the errors present on the current grid
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are reduced by a factor similar to the reduction achieved on the finer grid per
each multigrid cycle. A multigrid cycle consists of the processes involved in
performing a few relaxation sweeps on the finest grid, then proceeding down
to the coarsest level and returning back to the finest grid level. Since & is a
measure of the convergence rate (per relaxation sweep) of the high frequency

errors, it can be used to find §; hence,
b=7", (3.1.16)

where r is the number of relaxation sweeps on the finer level per multigrid
cycle. “With good relaxation schemes 7 ~ 0.5 and r ~ 3, thus setting
§ = 0.125 is usually a good idea [Brandt, 1979]. Like n, § may be found by
trial and error, and variations in & have little effect on multigrid efficiency
[Brandt, 1977].

The parameter « is used to determine the convergence criteria € for the
finest level visited. “On the currently finest level (¥ = [) we need convergence
to within the estimated size of the truncation error” [Brandt, 1977]. If grid
level [ has already been visited, the current estimate of the truncation error
is 7'71, but an estimate corresponding to level ! is desired for use as the
convergence criterion. Therefore, the convergence criteria on grid level [ may

be taken as

e =ar’t, (3.1.17)

where the parameter « is a scaling factor relating the truncation error from the
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coarser grid to that on the finer grid. Since the truncation error is dependant

upon the nodal spacing (H, h) and the approximation order (p),

a= (%—)_p. (3.1.18)

Assuming that the nodal spacing on the coarse grid is twice that of the next

finer grid (which is usually the case), (3.1.18) may be rewritten as

a=2"" (3.1.19)

-2

Returning to (3.1.17), if 7/=2 is not known, 7'~ is used to determine e!. The

new equation is

e = a?r!? (3.1.20)

and is used when grid level [ is visited for the first time [Brandt, 1977].

3.2 Adaptive Grid Method

Adaptive grid schemes are similar to multigrid methods. Like multigrid
methods, adaptive grid algorithms use a sequence of finer and finer uniform
grids to solve a problem. But with adaptive grid schemes, each finer grid
may be confined to increasingly smaller subdomains which require additional
refinement. The purpose of adaptive grid methods is to minimize the compu-
tational work by identifying regions of the domain which have converged to
some desired accuracy so that further computations are confined only to those

subregions which have yet to converge and, thus, require additional
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refinement. Such regions often occur in problems with steep gradients, such
as transonic flows, fronts, shocks, etc. [Hedstrom and Rodrique, 1982].

Here, the work is restricted to one-dimensional problems. This allows
the Gauss-Seidel relaxation step to be replaced with a line (direct) solver.
This eliminates the need to return to the coarser grids since the direct solver
solves the problem to the level of truncation error on the associated grid. In
order to make full use of the coarser grids, the following adaptive scheme is
introduced. With this scheme the finer grids may be confined to increasingly
smaller subdomains. The adaptive grid procedure is outlined in Figure 3.2.1,
and proceeds by first solving the discretized problem on a coarse grid using
a direct solver. Second, the solution is interpolated to the next finer grid
level. The problem is now solved (again using a direct solver) on the current
level over all existing subdomains or over the entire domain, as the case may
be. The relative truncation errors are now found and used to construct the
adaptive subgrids so that they contain the portions of the domain which have
not converged to the desired accuracy e. Several subgrids may be needed as
those portions of the domain which have not converged may lie separated from
each other. For such situations, each separate subdomain requiring refinement
is allocated to a different subgrid. In order to do this, effective boundary
conditions must be specified for each subgrid to eﬁsure the continuation of the

solution as each subdomain is treated as a separate problem. The problem is
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END

Figure 3.2.1: Adaptive Grid Flowchart
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now solved with the direct solver on the next finer grid only over those portions
of the subdomain covered by subgrids. At this point, the algorithm returns
to the interpolation step and then proceeds to check for the existence of any
subgrids on this finer grid level. As the criterion for convergence ¢ is also
used to define the subdomains, the existence of any subgrids requiring further
refinement indicates that the solution has yet to converge over the entire do-
main. So, if no new subgrids are defined, the solution has converged to the

1<e.

accuracy sought on all nodes. Convergence is detected when Aa:k_lrik"
By multiplying the local truncation error by Axi_1, the error is weighted with
respect to the grid level & — 1. Weighting the truncation error in this fashion
results in an error measurement comparable to that obtained on any other
level. With this algorithm, the final solution is presented as it exists on the

finest level. If the solution converges over the entire domain on one of the

coarser grids, it is then simply interpolated up to the finest grid for output.

A point to note is that since this algorithm is recursive, a subgrid may
itself contain several subgrids on finer levels which, in turn, may contain still

more subgrids on even finer levels of discretization.

One approach to the construction of the subgrids is to use a measure of
the truncation error to identify subregions requiring refinement. The actual
truncation error is not known, but it can be approximated by the relative
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(local) truncation error 7/ which is found by evaluating (3.2.1) .
= Ay - 18 (L) (3.2.1)

The relative truncation error is the truncation error on a coarse grid (GH)
relative to that on a finer grid (G") and approximates the true truncation
error on the coarse grid. It may also be viewed as “the error which arises
when the fine grid solution is substituted in the coarse grid equation” [Brandt,
1979]. In order to find 7/, two grid levels are required along with the solution
on the finer of the two grids. Once ThH is obtained, it is multiplied by the
weighting function Az y, and then compared to the desired accuracy in order
to identify those regions of the domain (nodes) on the coarser grid for which
the differential approximation has not converged. So, to obtain the adaptive
subgrids on the next finer level k+1, the solution from the current level k is
used in (3.2.1) to estimate the local truncation error on grid level k—1. This
estimate of the truncation error is now compared to the desired accuracy € to
identify (flag) those nodes (on level k—1) requiring further refinement. These
flagged nodes are then grouped together to form subgrids. Since these subgrids
define subdomains which are then treated as separate problems, appropriate
boundary conditions need to be specified for each subgrid. This is done by
extending the subgrid (on level k—1) to include nodes for which the differential
approximation has converged. The resulting subgrids are now defined on the
next grid level by identifying the nodes (on level £+1) corresponding to the
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subgrid boundaries on level k—2. To provide an estimate of the higher order
derivatives (such as flux) across subdomain boundaries, the subgrids may be
extended to include more than just a single converged node (see Figure 3.2.2).

The subgrids are constructed with the idea of avoiding any unnecessary or
duplicate computational work so as to increase the efficiency of the algorithm.
In constructing adaptive grids for one-dimensional problems, the process of
flagging and grouping unconverged nodes is combined with that of defining the
subgrid boundaries. This procedure begins by sequentially scanning the nodes
in each subgrid on the previous level (k—1) looking for nodes on which the
solution has yet to converge to the desired accuracy. The relative truncation
error and € are used to determine whether or not the solution has converged
on node i. Once an unconverged node is found (using (3.2.2)), it is used to

locate the boundary node where the first (or next) subgrid begins:
Azpmf7l > €. (3.2.2)

As the nodes are scanned sequentially, this subgrid boundary node 1s taken as
the previous node (which has converged to the desired accuracy). At this point
the corresponding node on grid level k+1 is identified as the boundary node
at which the subgrid begins. This is accomplished by storing the location of
the node (by node number) into an array (IADAPT) containing pointers used
to define the subgrid boundaries. The scanning process continues (on level

k—1) by searching for the next node on which the solution has converged.
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As before, the relative truncation error and the desired accuracy € are used
to make this determination. But since the search is for nodes on which the

solution has converged, Equation (3.2.3) is used instead of (3.2.2)
Irf 7 < e (3.2.3)

The first node found on which the solution has converged becomes the bound-
ary at which the subgrid ends. As before, the corresponding subgrid boundary
node on level k41 is identified and its location is stored in the array IADAPT.
The algorithm now returns to scan the remaining nodes, looking to construct
another subgrid where refinement Wisﬁfgcessary. The process continues until
all the nodes contained within the subgrids on level k—1 are searched. The
subgrids are now complete and have been identified on the next finer grid
level; with the exception of the boundary nodes, the subgrids contain only
unconverged nodes. As the solution on the subgrid boundaries has converged
to the desired accuracy, the problem within each subgrid may now be solved

(using Dirichlet conditions) without further modifications.

3.3 Transient Algorithms

Transient problems are solved using an implicit finite difference discretiza-
tion scheme in both the multigrid and adaptive grid algorithms presented. The
spatial terms of the partial differential equations are discretized onto uniform
grids using a central finite difference approximation while the time domain is

discretized with a backward finite difference. As usual, the unknown terms are
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placed on the left hand side of the equation and the known terms are placed
on the right hand side. This leads to an algebraic system of equations of the
form

LUl = Fi-1, (3.3.1)

where j and j — 1 are integer values denoting the time steps of interest. The
operator L now includes terms containing the time increment At. The term
U represents the discrete solution at the current time step and F' contains
the discretized forcing function (if it exists) along with the solution from the
previous time step.

In handling transient problems, local time stepping is not used here; in-
stead, a fixed time increment is employed throughout the solution process.
Each time step is treated as an individual problem and is solved separately
using the previously described multigrid or adaptive grid methods. In transfer-
ring from one time step to the next, the solution from the finest grid (current
time step) is coarsened (restricted) and used as the initial estimate for the

problem on the coarsest grid at the next time step:

1 __ rcoarsest ] .
Utoarscst = finest finest? (3.3.2)

where 7 denotes the current time step (just solved) and j 4+ 1 denotes the
next time step. The operator I$247%¢** is simply a fine to coarse restriction

finest

operator which is applied the number of times required to restrict the finest
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grid solution down to the level of the coarsest grid.

3.4 Nonlinear Adaptive Grid Algorithm

The adaptive grid algorithm is also used to solve nonlinear problems.
Discretizing a nonlinear problem results in a set of simultaneous algebraic
equations containing coefficients dependant upon the solution. To handle the
nonlinearities, Picard iterations are applied to the tridiagonal solver.

The solution to nonlinear problems may contain fronts with very steep
gradients. Solving such a problem using the adaptive grid method requires
that an estimate of the solution be transferred from a coarse grid to a fine
grid. In transferring the solution to a finer grid level, it is desired to minimize
the introcduction of large errors. Due to the nature of nonlinear problems,
such errors can result in numecrical instabilities. To limit the creation of these
errors, the adaptive grid algorithm uses only linear interpolations. Using a
cubic (or higher order) interpolation to transfer the approximation of the
solution to a finer grid can result in the introduction of relatively large errors
near fronts with steep gradicents. These errors are created as the interpolated
approximation (on the fine grid) will tend to overshoot the actual solution
near fronts. The use of a linear interpolation can avert this potential problem,

but it will create some high frequency errors (see Figures 3.4.1 and 3.4.2).

- The high frequency crrors can easily be smoothed out on the fine grid at the

expense of some additional computational work.
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To solve nonlinear problems with the adaptive grid method, Picard iter-
ations are used in conjunction with a direct solver. The adaptive grid process
may require the use of several subgrids, with each subgrid encompassing a
different portion of the domain. Each subdomain is treated as a separate
problem. The solution on each subgrid is found by using Picard iterations
along with the tridiagonal method. The direct solver is iterated until the ap-
proximation converges on the solution. This procedure begins by using the
most recent approximation of the solution to estimate the value of the nonlin-

ear coefficients. The coefficients arc held constant and the direct linear solver

is used to obtain a better estimate of the solution. A residual norm e* is now
computed {over the current subdomain) using
P HF" — LkukH. (3.4.1)

The nonlinear coefficients are updated and the process is repeated until the
residual norm becomes approximately constant from one iteration to the next,

signalling that the approximation has converged. Convergence is defined by

eF — & < toler, (3.4.2)

where &* is the residual norm as it existed prior to the relaxation sweep and
toler is a user defined tolerance used to detect convergence. When (3.4.2) is
satisfied, program execution procceds on to either the next subdomain or the

next grid level. The resulting algorithm is presented in Figure 3.4.3 .
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Chapter 4

Test Problems

Several test problems arc used to verify the multigrid and adaptive grid
algorithms implemented into computer programs. The test problems are also
used to highlight some of the main features of each program. Each of the
problems are discretized using a central finite difference approximation for
the spatial terms. In addition, the time-dependent problems use a backward
finite difference approximation for the transient terms. For the approximations
used to solve the steady-state problems, the truncation errors are on the order
of Az? (also denoted as O(Aa?)). The transient test problems are discretized

using a finite difference approximation with O(Az?, At).

4.1 Test Problem #1

The first test problem was used to verify the initial multigrid program
written. This program was first implemented on a personal computer (Apple
Ilc) and later rewritten for use on a VAX machine. Test problem (4.1.1) is
designed to show that the multigrid algorithm quickly solves a problem which
may take a very large number of iterations to solve on a fine grid using an

iterative relaxation method. The problem is

o =fx) (0<x<), (41.1a)
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subject to the boundary conditions:

w(0)=0 and u(1)=0. (4.1.1b)

The forcing function f(z) first used with (4.1.1) is

f(x) = =n?sin(rz) . (4.1.2)

Equation (4.1.1) with its forcing function given by (4.1.2) is referred to as test
problem #1a. Discretizing (4.1.1) using (4.1.2) onto a grid containing n nodes

yields:

1

Aoz (wisy — 2ui + uip) = —mlsin(riAz) (1 < i< n), (4.1.3a)

and (for the boundary conditions)

uy =0 and u,=0. (4.1.3b)

The analytical solution to (4.1.1) with (4.1.2) is

u(x) = sin(mz) . (4.1.4)

A different forcing function (4.1.5) containing both high and low frequency
terms is now introduced to illustrate that the effect of low frequency errors is

to slow down the convergence rate of the solution:

Lol d
- i

10

flz) = —w?sin({ma) — sin(267z) . (4.1.5)
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Equation (4.1.1) with the forcing function defined by (4.1.5) is referred to as

test problem #1b. Discretizing (4.1.1) using (4.1.5) results in

1
Azx?

B 2
(wimy = 2u; + uipr) = =7’ sin(midz) — (_?g) sin(267tAz), (4.1.6a)

where (1 <7 < n), and
;=0 and u,=0. (4.1.6b)
The analytical solution for this case is
u(x) = sin{72) + 0.1sin(2672) . (4.1.7)

4.2 Test Problem #2
The multigrid program was extended to solve transient one-dimensional

partial differential equations (PDEs). A new test problem,

O%u

922 = % 0<2<1,t20), (4.2.1q)

subject to the following conditions:
w(0,t) =0, u(1,t) =0, and u{x,0) = sin(7wz) (4.2.10)

was introduced. In addition to the multigrid program, the adaptive grid
method is also used to solve this transient problem. Discretizing the prob-

lem using an implicit finite difference scheme for the time domain gives

~Mul_ + (M + 1) = Mul =ulTh (I<i<n, j21), (4.2.2¢)
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where

At
M= TR (4.2.20)
with the boundary conditions:
w] =0 and ul =0 (4.2.2¢)

The superscripts j and j — 1 are integers referring to the current and previous

time steps. The initial condition (4.2.1h) is discretized as

u;

9 = sin(miAz). (4.2.2d)
The analytical solution for this problem is
u(a,t) = si11(7rz)e_"2t : (4.2.3)

4.3 Test Problem #3
An upwind/downwind Gauss-Seidel relaxation method was introduced
into the multigrid program. The problem solved, Equation (4.3.1), is a one-

dimensional convection-diffusion equation with constant coefficients,

d%u du  Ou
< —_ Y —_— = — < rxr < > 13
hal.z Y or ot (0<z<1,120), (4.3.1a)

where v£ >> k with the size of the domain £ = 1. Equation (4.3.1a) is

subject to the conditions

u(0,t) =0, u(1,t) =0, and wu(z,0)=sin(mz). (4.3.1b)
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The discretized form of this problem is

-1

M+ N+ M+ Dl (M =Nl =ul™ (I<i<n, j>1),

(4.3.2)

where

AN v At
, ] N=——. 4.3.
a2 ana 2Az (4.3.3)

M=

L

4

As in the previous problem, the boundary and initial conditions are discretized
as
n

uwl =0, w) =0, and u} =sin(riAz). (4.3.4)

The analytical solution to this problem is

u(x,t) = dar®e®” i 3 77:" {(—1)”16_“ — 1] e *m!sin(mrz), (4.3.5)
m=1 """
where

B = a® + (n —1)*7?, (4.3.6)
Ym = @+ (m 4+ 1)27% (4.3.7)

Dy )2 4 2
N = (kazl + v , (4.3.8)
@ = 5”; . (4.3.9)

Test problem #3 is one that can possess rather steep gradients in the field
variable and may require a fine mesh to properly resolve the steep gradients
present. In addition, an adaptive grid program employing a direct solver was

also used to solve the problem.
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4.4 Test Problem #4
The next test problem is the nonlinear viscous Burgers’ equation (4.1.1)

which is solved using adaptive grids,

9*u Ju Ou
L gy = — <z<1l,t>0 4.
VOIZ ual‘ 3t (O > 1 sl )7 (4 4 1)
subject to the conditions:
w(0,t) =1, v(1,t) =0, and u(z,0)=0. (4.4.2)

Discretizing (4.4.1) yields:

(M + Niypd_y + M + Vo] = (M = N pdy, =l (1<i<n, j21),
(4.4.30)

where

At At
. Ni==2ud | (4.4.3a,b)

A = =
! Az?’ : 2Az1 ¢

The nonlinearity causes a problem because the coefficient N/ in (4.4.3a) is

not known since it depends upon the solution sought (uf) To get around this

J

problem, the most recent approximation of the solution @] available (from the

previous grid level or iteration) is used instead of uf in (4.4.4).

Nz-j = - wl _ (4.4.4)

Having approximated N,-j, the discretized set of equations may now be solved.
The new solution can then be used to find a better approximation for the
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coefficient Nl-j, which in turn can bhe used to compute a more accurate esti-
mate of the solution and so on — until the solution ceases to change by some
predefined amount. Thus, this discretization scheme leads to an iterative so-
Iution method. Usually, only a few iterations are required for the solution to
converge for each time step.

Summarizing, we have

—(M + NDyud_| + QM + )l = (M =Nl =4l (Q<i<n, j>1),

(4.4.5)
where
vt : At _;
o NS N —J =5
A = Alz , ‘Ni A u; (4.4.0&, Z))
with
ué =1, v, =0, and «?=0. (4.4.6)

For comparative purposes, this problem is also solved using a tridiagonal
solver which incorporates Picard iterations. To obtain an equitable compari-
son between the adaptive grid and tridiagonal methods, both algorithms are
used to obtain solutions of similar accuracy. This is done by first solving the
problem using the adaptive grid algorithm, and then computing a residual

norm e4¢ (on the finest grid level) using

esg = ||F — Lul|, (4.4.7)

where the subscript AG refers to the adaptive grid scheme. As the tridiagonal
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scheme uses the same type of residual to detect convergence of the solution,
e ¢ is used as the convergence criteria for the tridiagonal algorithm.
4.5 Test Problem #s5

The fifth test problem is to solve a nonlinear equation modeling one-
dimensional water flow in an unsaturated soil. The equation used is the water

content formulation of the Richards’ equation:

o8 0 I 06

L (- =)= 4.5.1

ot + dx (R C 5;7;) 0 ( )
where C = ——%, 8 is the volumetric water content, I’ is the hydraulic con-

ductivity, % is tension, ¢ is time, and 2 is depth measured from the soil surface.

The coefficient C 1s found from the water retention curve

8 — 9,~ AN\ —TI
S. = = (1 + (dh)”) , (4.5.2)
g, — 8.
where
. 1
m=1- = (4.5.3)

The hydraulic conductivity is given by
- R L2
KN=K,S¢(1-(1-8")")" - (4.5.4)
In the above equations, I\'y is the saturated hydraulic conductivity, 8, and 6,
are the residual and saturated water contents, and &, ", and 71 are model
parameters determined from laboratory data. By differentiating and manipu-

lating (4.5.4), a function for 2—z in terms of 8 is found

% = —GRm(8, - 6,)(STF — 1) s (4.5.5)



And so, C' is now given by

-1 m o BEl
C = anm(f, —0.)(Se ™ —1) Se™ . (4.5.6)

Equation (4.5.1) is solved over a domain of 0 < z <700 cm. and is subject to

the boundary conditions:
¢(0,¢) = 1.82 em/hr (flux), and 6(700,%) = Oinitiar - (4.5.7a,b)

The initial condition is given in terms of capillary tension and is

Binitiat = —50,000 cm H,O . (4.5.8)

The initial water content 8;,,;;;¢: is computed by introducing the initial tension
into the water retention curve (4.5.2). The entire problem is solved up to a
times of 5, 15, and 35 days. At 35 days, the infiltration front has not reached
z = 700 cm, thus (4.5.7b) is still valid.

The soil used for this numerical model is loamy sand, which is character-

ized by the following parameters:
6, =0.0828, 6, =0.3209, K, =270.1 cm/day,

a =0.05501, and 7 =1.5093.

The value of Ii'; was determined from laboratory data while the remaining
parameters are taken as the average values for the loamy sand found at the
Las Cruces trench site [Hills et al., 1989a,b].
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This problem is solved using an adaptive grid method similar to that used
to solve the previous problem. The expanse of each of the finer adaptive grids
is determined by comparing the estimate of the local truncation errors to a
predefined accuracy term e. For comparative purposes, the problem is also
solved using the tridiagonal method. In order to obtain a solution of similar
accuracy, the value of the residual norm from the adaptive grid method esq
is used as the convergence criteria for the tridiagonal scheme. In both cases,
Picard iterations are employed in order to handle the nonlinearities. Each
Picard iteration consists of first, estimating the value of the coefficient C
and the hydraulic conductivity I using the most recent estimate of §. The
updated values of C and K arc then used to compute a better estimate of 6.
This process is repeated until convergence is reached, for each time step.

Discretizing (4.5.1) yields

- Af.fD,-_%G{'_l + (M(Di—y + Diyy) + 1)6]

N —
— ‘;\IDi+‘59{+1 -+ Z—Z:(Al - I\'i-—l) = 9{ ! ) (459)

where
1 1
D, = E(Dz—l + Di), Diyy = §(Di + Dit1),
v At
Dl = = AI = ’
C‘l A.l:2
Ki= K.SF(1-(1-87)™?,

C,‘ = dflﬁ?(gs - 6,»)(56:;% - 1)ﬁ15’ei " 3
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and

The term 8; is the most recent approximation of the solution on node 7 for the
current time step. For this problem the finite difference nodes are centered in
the grid volumes as shown in Figure 4.5.1 . To center the nodes in the grid
volumes, the finite difference grids are shifted S* into the domain. This is
performed on all grid levels so that coarse grid nodes correspond to their fine
grid counterparts. Therefore, the direct injection and interpolation processes
are performed in the same manner as denoted in chapter four. Applying the
flux boundary condition (4.5.7a) to the finite difference equation for node 1

gives

: S A,
(MD,y +1)6] — MD, 18] = 6] - E(le% —¢(0,1)) . (4.5.10)

Discretizing the other boundary condition (4.5.7b) results in:
6 n = initial (4511)

where the subscript n refers to the final node in the grid.
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Chapter 5

Résults

The test problems presented in the previous chapter are solved using ei-
ther the multigrid and/or the adaptive grid methods. The computed solutions
are compared to the analytical solution to verify the programs. For compar-
ative purposes, the performance of these algorithms are compared to that of
a direct solver (employing the tridiagonal method) and a program using the

Gauss-Seidel method.

The performance of the algorithms is measured by comparing the com-
putational work or CPU time (actual running time of the program) required
to solve a problem. For the Gauss-Seidel method, the computational work
is directly related to the number of iterations needed to solve the problem.
For the multigrid and adaptive grid algorithins, the computational work is
measured in terms of work units (\\’p), where one WU is equivalent to a sin-
gle Gauss-Seidel sweep on the finest grid level. This definition of work units
neglects the overhead associated with mapping to different grid levels in both
the multigrid and adaptive grid programs. An alternate measure of a pro-
grams performance is the CPU time required to solve a problem. Measuring
the time needed to solve a problem accounts for all the computations done.
A potential complication is that CPU time is machine dependant. Thus, in
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order to compare algorithms by using CPU time, the programs must be run
on the same computer.
5.1 Results for Test Problem #1

Test problem #1 (4.1.1) is solved using the multigrid method, the Gauss-
Seidel algorithm, and a direct solver (tridiagonal method). To compare the

performance of these methods, problem #1la,

I ,
e sin(mx) ,

da?

and problem #1b,

267)?
— = —7"sin(rz) — ) sin(26rz) ,

10

are discretized and solved (with the tridiagonal and Gauss-Seidel methods) on
a grid containing 129 nodes. For the multigrid method, these test problems
are discretized using 6 grid levels such that the finest grid contains 129 nodes.
With this discretization scheme, there are only 5 nodes on the coarsest grid.
For these problems, the multigrid method is many times faster than Gauss-
Seidel yet somewhat slower than the direct solver (sce Tables 5.1.1 and 5.1.2).
The multigrid solution for test problem #1a, where f(z) given by (4.1.2),
is plotted along with its analytical solution in Figure 5.1.1 . In solving this
problem, the switching paramecters used by the multigrid program are: a =
0.25, § = 0.22, and = 0.623 . The multigrid program solves problem #1la
in 16.35 work units. In contrast, the Gauss-Seidel algorithm requires 22542
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Table 5.1.1: Results for Test Problem #1la

Solution Method Computaﬁtiohalr Work CPU Time
Multigrid 16.35 WU 0.08 sec
Gauss-Seidel 22542 iterations 48.41 sec
Direct Solver - 0.02 sec

Table 5.1.2: Results for Test Problem #1b

Solution Method Computational Work CPU Time
Multigrid 18.60 WU | 0.07 sec
Gauss-Seidel 22541 iterations 49.69 sec
Direct Solver - 0.02 sec
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jterations to get the same solution. So, based on work units the multigrid
method solves this problem about 1300 times faster than the Gauss-Seidel
algorithm. In making this comparison, one should keep in mind that the def-
inition of ‘work units’ used neglects the overhead involved with the multigrid
scheme. A better comparison may be obtained by considering the amount of
CPU time required to solve the problem. The Gauss-Seidel algorithm took
48.41 seconds of CPU time (CPU seconds) to solve the problem while the
multigrid method needed only 0.08 CPU seconds. That’s an approximate in-
crease in speed of 600 times over the Gauss-Seidel scheme. Test problem #1la
was solved with a direct solver (tridiagonal method) in 0.02 CPU seconds or
about 4 times faster than the multigrid method.

The multigrid program was also used to solve problem #1la several times
while varying the number of grid levels and the number of nodes present on
the finest grids. The resulting data (CPU time and work units needed to get
the solution) is given in Table 5.1.3 . By keeping the number of grid levels
constant and varying the number of nodes on the finest level (by increasing the
number of nodes on the coarsest level) the effects of the discretization on the
coarsest grid is seen in terms of program efficiency. As the number of nodes
on the coarsest grid increases, the number of work units required to solve the

problem also increases (sce Figure 5.1.2). The main reason for this effect is

that as a finer and finer grid is used on the coarsest grid level, an increasing



Table 5.1.3: Test Problem #1a, Results

# of # of nodes # of nodes Work CPU time
levels coarsest grid finest grid Units seconds

4 8 57 15.47 0.04

5 S 113 21.64 0.08

6 8 225 19.25 0.13

7 8 449 17.83 0.24

8 8 897 17.04 0.43

4 7 49 14.41 0.04

5 7 97 15.48 0.06

6 7 193 21.06 0.3

7 7 385 18.73 0.21

7 7 769 17.45 0.37

4 6 41 13.59 0.02

5 6 81 15.45 0.06

6 6 161 15.89 0.08

7 6 321 21.12 0.20

8 6 641 18.64 0.35

9 6 1281 22.37 0.80
4 5 33 14.53 0.03 |
) 5 65 16.36 0.05

6 5 129 16.35 0.08

7 3 257 17.27 0.13

8 5 513 17.14 0.26

0 5 1025 17.61 0.50

10 5 2049 21.83 | 1.27

6 4 07 24.08 0.09

7 4 193 25.01 0.16

8 4 385 26.52 0.30

9 4 769 26.79 0.59
10 4 1539 26.41 1.16
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Table 5.1.3: Test Problem #1a, Results, continued

# of # of nodes # of nodes Work CPU time
levels coarsest grid finest grid Units seconds
6 3 65 17.66 0.05
7 3 129 16.86 0.08 |
8 3 257 17.42 0.13
9 3 513 17.16 0.25
10 3 1025 17.58 0.50
11 3 2049 21.79 1.29
2 65 120 | 352.80 0.67
3 33 129 127.80 0.26
4 17 129 43.00 0.12
5 0 129 10.76 | 008
6 5 129 16.35 0.08
7 3 129 16.86 0.08
6 65 2049 237.40 6.24
7 33 2049 56.93 2.09
8 17 2049 28.39 1.50
9 9 2049 16.64 0.96
10 ) 2049 21.83 1.27
11 3 2049 21.78 1.27
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amount of computational work is required to resolve the lowest frequency
errors no longer visible on the coarsest grid. Thus, more computational work
is required to resolve these low frequency errors.

The multigrid solution for test problem #1b (in which f(z) is given by
(4.1.5)) is presented along with its analytical solution (4.1.7) in Figure 5.1.3

As with the previous problem, the multigrid method was used to solve
problem #1b using the same switching parameters (o = 0.25,6 = 0.22, and
n = 0.625). With this set of switching parameters, an insufficient amount
of work is performed on the coarser grids to adequately smooth out the low
frequency errors (see Figure 5.1.4). With this problem, the high frequenc_'y;
terms of the solution are aliased and appear as low frequency terms on the
coarser grids. So, as the problem is relaxed on the coarse grids, the aliased
terms are smoothed out and consequently a low frequency error is introduced
into the solution.

One way the errors appcaring in 'Figure 5.1.4 may be reduced is by dis-
cretizing the problem (at all levels) onto much finer grids. However, doing
so tends to be contrary to the purpose of the multigrid method because an
acceptable solution is obtained at the expense of computational work. There-
fore, this is not such a good idea due to the large increase in computational
work needed to get a good solution.

By exploiting the switching parameters § and n which are built into the
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multigrid scheme, the problem is easily remedied. Reducing the value of é re-
sults in a more stringent convergence criterion on the coarser grids and thus,
more work is performed on these grids. This serves to better resolve the low
frequency errors present in the solution on the coarse grids, and so, these er-
rors tend to be less of a problem. Increasing n leads to more relaxation sweeps
(per multigrid cycle) on each level before transferring program execution to
the next coarser grid. Since more relaxations are performed before changing
grid levels, aliasing errors, as well as any errors introduced by the interpola-
tion routines, benefit from the additional relaxation sweeps. Setting é = 0.1
and n = 0.7 (values found by trial and error) eliminates the problem of the
undesired low frequency error (see Figure 5.1.5) while the number of work
units required to get the solution increases slightly. By using this new set
of switching parameters, the more accurate solution shown in Figure 5.1.3 is
obtained.

The performance of the multigrid algorithm is similar to that obtained
for problem #1la. Test problem #1b is solved with the multigrid algorithm in
18.6 WU and takes 0.07 CPU seconds. The Gauss-Seidel method takes 22541
iterations and 49.41 CPU seconds to get the same answer while the the direct
solver requires only 0.02 seconds of CPU time. Thus, the multigrid method
is about 1200 times faster than Gauss-Seidel but 3.5 times slower than the

tridiagonal method.
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5.2 Results for Test Problem #2

The next problem solved, test problem #2, is the one-dimensional tran-
sient diffusion equation given by (4.2.1). The problem is discretized onto a
grid with 129 nodes and is solved using the multigrid, Gauss-Seidel, tridiagonal
and adaptive grid methods. The problem is solved to within 99% of steady
state, which occurs at about + = 0.50. As with all the transient problems
solved here, time stepping with a fixed increment is employed throughout the
solution process for each algorithm. The time increment used in solving this
problem is At = 0.001. To solve to near steady state (¢ = 0.50), 500 time
steps are needed. In order to solve test problem #2 using the multigrid and
adaptive grid methods, 6 grid levels with the coarsest grid containing 5 nodes
and the finest grid containing 129 nodes are used.

The multigrid and analytical solutions for various z positions (z =
0.125, 0.25, 0.50) are plotted in Figure 5.2.1 . Likewise, in Figure 5.2.2,
the adaptive grid solution is presented along with the analytical solution for
the same x positions. The switching parameters used in the multigrid program
to solve the problem are a = 0.25,8 = 0.125, and n = 0.50. The multigrid
mcthod requires a total of 2212 WU (an average of 4.42 work units per time
step) to solve the problem in 7.82 CPU seconds. To investigate the multigrid
algorithm, several values of § and 1 were used to solve problem #2. The

results obtained are tabulated in Table 5.2.1 in terms of computational work
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Table 5.2.1: Test Problem #2, Multigrid Results

average WU CPU time

) n total WU per time step (seconds)
0.25 0.220 0.625 2404 4.81 8.50
0.25 0.125 0.500 2212 4.42 7.82
0.25 0.125 0.700 2409 4.82 8.37
0.25 0.100 0.500 2212 4.42 7.87
0.25 0.100 0.450 2212 4.42 7.37
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and CPU time. Varying § and 5 Lad little effect on the overall efficiency of
the algorithimn, yet the number of work units needed to solve the problem for
a given time step differed until the solution began to approach steady state
(see Figures 5.2.3 and 5.2.4).

In the first case (Figure 5.2.3), a pulse in the number of work units needed
to obtain the solution (for a particular time step) appears just prior to a
steep ‘drop off’. The drop off in the amount of work units needed is also
present in thie second case, Figure 5.2.4 . To explain the occurrence of these
effects, one should consider both the solution process or algorithm as well as
the actual solution to the problem being solved. With this in mind, as the
solution approaches steady state, it varies less and less with each new time step
and consequently, the initial estimate of the solution for each new time step
becomes more accurate. Also, as steady state is approached, the magnitude
of the low frequency errors, which dominate this problem, decreases. When
this is coupled with multigrid process, ﬁhe drop off and pulse shown in Figures
5.2.3 and 5.2.4 is produced. So, as the solution process progresses in time,
the nced for additional coarse grid work (to smooth out low frequency errors)
is eliminated and the point where this occurs shows up as a sudden drop off
in the number of work units required to solve this problem for the particular

time step. Prior to the drop off, the solution process goes from the coarsest

to finest grid level and then returns to the coarser grids before finishing off on
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the finest level. After the drop off, the solution process stops upon reaching

the finest level and then continues on to the next time step.

The pulse (Figure 5.2.3) is produced in a somewhat similar manner. Ini-
tially, the amount of low :requency error present in the estimate of the solution
leads to inefficient relaxation sweeps. This results in the algorithm cycling
back to the coarser grids (before reaching the finest level) to smooth out low
frequency errors. Then, upon reaching the finest level for the first time, the
solution converges to the desired accuracy and the algorithm proceeds to solve
the problem for the next time step. Later, as the solution process approaches
steady state, the amount of low frequency errors decrease and results in a de-
lay of the onset of inefficient relaxation sweeps until the finest level is reached.
At this point, execution returns to the coarser grids. Delaying the return
to coarser levels in this manner means that some of the additional work is
performed on the finer grids. It is this additional, and relatively costly, com-

putational work that produces the pulse.

Comparing the multigrid algorithm to both the Gauss-Seidel and tridi-
agonal methods yields results similar to those for test problems #1. The
Gauss-Seidel algorithm requires 54307 iterations in 116.6 CPU seconds to de-
termine the solution to near steady state (¢ = 0.50). Based on work units, the
multigrid method solves this problem 24.7 times faster than the Gauss-Seidel
algorithm, but is only 14.8 times faster when CPU time is compared. The
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direct solver solves the problem out to steady state in 1.74 CPU seconds, or
4.54 times quicker than the multigrid method does.

The adaptive grid method solves the problem to steady state in §.31 CPU
seconds and requires an average of 0.762 WU per time step. To compare the
performance of the adaptive grid and multigrid algorithms, both the number
of work units and the amount of CPU time needed to obtain the solution
is considered. Based on work units, the adaptive grid scheme is about 5.8
times faster than the multigrid method. While this appears to be a significant
improvement, this comparison may be misleading as it does not account for
the overhead (interpolations, bookkeeping, etc.) required by both methods.
By comparing CPU time, one finds that the adaptive grid method solves the
problem approximately 1.5 times faster. \Vhile' the adaptive grid method
outperforms the multigrid program, it is still about 3 times slower than the

direct solver.
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5.3 Results for Test Problem #3

Test problem #3 is the one-dimensional convection-diffusion equation
given by (4.3.1). The problem is solved using a multigrid method employing
the use of an upwind/downwind Gauss-Seidel relaxation scheme. For com-
parative purposes the problem is solved with a direct solver. In addition, the
adaptive grid method is also used to obtain the solution. In order to solve test
problem #3, the domain is discretized onto a 225 node grid. For the multigrid
and adaptive grid methods, 8 grid levels are used with the coarsest and finest
grids containing 6 and 223 nodes respectively. The solution is found up to
near steady state (¢ = 0.20) using 200 time steps. To solve test problem #3,
a fixed time increment of At = 0.001 is used in all the programs.

The multigrid and analytical solutions are shown in Figures 5.3.1 and
5.3.2. In Figure 5.3.1, the solution is presented as it stands at a time of 0.05.
Figure 5.3.2 shows how the solution at certain nodes (¢ = 0.25, 0.50, and 0.75)
vary with time up to the onset of steady state. The multigrid program with
the switching parameters set at « = 0.25, § = 0.22, and n = 0.70 is used
to solve this problem. The solution up to near steady state is found in 4.47
CPU seconds and requires an average of 15.5 WU per time step. Again, the
values of § and n were varied in order to see how they affect program efficiency
(see Table 5.3.1). For this problem, both the CPU time required to find the

solution and the average number of work units needed per time step remained

~1
[SV]



1.2

1.0

0.8

0.6

0.4

0.2

r——r—r LA B S S B S B e e e e e s o Y Y =TT P T YT T
1 L) 1 T

ey

Adaptive Grid vs Analytical Solutions
. at time t=0.05 3

AR SAAAAARALS RAARARA AL,

Adaptive Grid

\AAS RAAAAAAL

TYTTYYYYYY

Analytical

0.0 5
Py | TSI FUTUTTWTTY ST P DT e
“0.0 0.2 0.4 0.6 0.8 1.0
X ,
Figure 5.3.1: Adaptive Grid Solution to Problem #3,
Snapshot View
1.2 p—r—r———— — e —r—r————— ey ——————r——
t  Adaptive vs Analytical Solutions
1.0 k Time History of Nodes at Different x 3
0.8 -
0.6 -
0.4 =
0.2 =
0.0
02 bemu i
0.00 0.08 0.10 0.15 0.20

Time

Figure 5.3.2: Adaptive Grid Solution to Problem #3,

Time Histories; Analytical and Multigrid Solutions Overlie
73



Cr:

Table 5.3.1: Test Problem #3, Results; Time = 0.050

average WU CPU time

! ) n total WU | per time step (seconds)
0.25 0.125 0.500 879 17.6 5.31
0.25 | 0220 | 0.625 821 16.4 4.79
0.25 0.220 0.700 773 15.5 4.47
0.25 0.220 0.800 920 18.4 4.93
0.25 0.220 0.500 872 17.4 5.35
0.25 0.220 0.400 859 17.2 5.36
0.25 0.100 0.700 8§28 16.6 4.84
0.25 0.300 0.700 815 16.3 4.72
0.25 0.500 0.700 1114 22.3 6.59
0.25 0.700 0.700 2433 48.6 14.86




relatively constant with respect to 6 and 7.

The adaptive grid solution to test problem #3 is compared to the ana-
Iytical solution in Figures 5.3.3 and 5.3.4 . In Figure 5.3.3, the solution is
depicted as it exists at a time of ¢ = 0.05, while Figure 5.3.4 shows how the
solution at selected nodes progresses through time. The adaptive grid scheme
requires 3.87 CPU seconds to find the solution up to steady state and averages
1.06 WU per time increment.

In contrast to the results obtained from the multigrid and adaptive grid
algorithms, the direct solution (triciagonal) method solves test problem #3 in
1.19 CPU seconds. Thus, the direct solver outperforms the multigrid method
again, but this time by about a factor of 13.7 times. The adaptive grid method
fared a bit better, as it ran about 3.3 times slower than the tridiagonal scheme
and about 4.2 times quicker than the multigrid algorithm. In further compar-
ing the multigrid and adaptive grid schemes, the multigrid method required

13.11 times more work units to determine the solution up to near steady state.

75



1.2 - ———— B e B T

1.0 F B
- 0.8 F =
06 F T 4

u 3
0.4 F Multigrid Solution 3
0.2 F Analytical Solution
0.0 F .
E NPT T D T BN
-0.
20.0 0.2 0.4 0.6 0.8 1.0

X
Figure 5.3.3: Multigrid Solution to Problem #3, Snapshot View

1.2 Ty T T T T Ty I e r
Multigrid vs Analytical Solutions

1.0 Time History of Nodes at Different x =

08 =

0.6 s

0.4 -

0.2 4

0.0

02 S b e e
0.00 0.05 0.10 0.15 0.20

Time
Figure 5.3.4: Multigrid Solution to Problem #3, Time Histories;

4
Analytical and Multigrid Solutions Overlie
76



l

"
{

I
o

0l

5.4 Results for Test Problem #4

Test problem #4 uses the nonlinear viscous Burgers’ equation given by
(4.4.1) and (4.4.2). This problem is solved using both an iterative tridiago-
nal and adaptive grid algorithms. As the analytical solution to test problem
#4 was not found, the adaptive grird algorithm is verified by comparing its
solution to that found using the tridiagonal method. The Burgers’ equation
is discretized onto a 1025 node grid. The adaptive grid program uses 8 levels
of discretization with thie coarsest level containing 9 nodes. The solution is
found up to ¢t = 1.00 using 100 time steps with the constant time increment
At = 0.01 . The problem is also solved using larger time increments in order
to determine the largest time step which will yield a satisfactory solution.

The tridiagonal program, used to generate the data presented here, uti-
lizes the adaptive gr‘id residual norg;,(for the analogous adaptive grid case)
from the final time increment as the convergence criteria for each time step.
So, the convergence criteria remains the same from one time increment to
another. Additionally, the tridiagonal program was modified such that the
adaptive grid residual norm from ecach time step (found from the finest grid
level) is used as the convergence criteria for the corresponding time increments.
This alteration in the tridiagonal i)L*Ogl‘alll did not result in any appreciable

changes in the performance of the program for this problem.
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The solutions from the tridiagonal and adaptive grid programs are pre-
sented in Figure 5.4.1 . The adaptive grid method solves test problem #4 in
approximately 9.32 CPU seconds and requires an average of 0.661 WU per
time step. In contrast, the direct solver (which employs Picard iterations to
handle the nonlinear terms) finds the solution in 30.37 CPU seconds and re-
quires an average of 7.04 work nnits (iterations) per time step. So, for this
problem, the adaptive grid program is about 3.26 times faster than the tridi-
agonal method. Comparing computational work shows that the tridiagonal
method requires about 10.66 times more work units than the nonlinear adap-
tive grid algorithm.

The nonlinear adaptive grirdl program parameters, toler and €, are varied
in order to see what affect they have on program flow and the resulting solu-
tion. For this problem, variations in toler (the criteria applied to the change

¥ _&*) to determine whether

in the residual norm between iterations (Ae = e
additional Picard iterations are 1‘equir'ed) have almost no cffect on the solu-
tion and solution process (sce Table 5.4.1). This occurs because the solution
rapidly converges within each subgrid, usually within 2 or 3 iterations. With
the exception of the coarsest grid, the residual norms, calculated within each
subgrid, become constaunt (A¢ = 0) in 2 iterations. Thus, varying toler has lit-

tle effect as it is designed to signal when the residual norms become constant.

Since the residual from the adaptive grid program is used as the convergence
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Table 5.4.1: Test Problem #4 Results, Variations in toler

adaptive subgrids use 2 converged nodes per boundary

where log(e) = —8, and At = 0.01

AD TRID AD TRID AD TRID
log average average CPU CPU residual residual
toler WU per WU per time time
time step time step sec sec |F' — Lu|| |F — Lul|
-2 .643 7.04 9.35 30.37 3.81E-4 2.26E-4
-3 647 7.04 9.28 30.37 3.81E-4 2.26E-4
-4 652 7.04 9.32 30.37 3.81E-4 2.26E-4
-5 657 7.04 0.30 30.37 3.81E-4 2.26E-4
-6 .663 7.04 0.28 | 3037 3.81E-4 2.26E-4
-7 .669 7.04 9.39 30.37 3.81E-4 2.26E-4
-8 675 7.04 9.34 30.37 3.81E-4 2.26E-4
-9 .681 7.04 9.34 30.37 3.81E-4 2.26E-4
80




criteria for the direct solver, the residuals found by the tridiagonal method

remain constant for each of the cases presented in Figure 5.4.1.

The parameter € is thie convergence criteria (applied to the relative trun-
(smaller) € becomes, the more the adaptive grid algorithm strives to improve
the accuracy of the solution by adding finer grids. As e is decreased, the al-
gorithm attempts to improve tlic accuracy of the solution at the expense of
increased computational work (sce Figures 5.4.2 and 5.4.3). If the value of € is
too large, not enough computational work is invested in order to adequately
resolve the location of the front present in the solution. This results in a solu-
tion in which the front lags behind its actual location. As depicted in Figure
5.4.4, the larger € is, the more the front lags. The data collected while varying

€ is presented in Tables 5.4.2a and 5.4.2b .

The size of the time increments used are important. Using a time incre-
ment of 0.01 results in a solution with a well defined front. Increasing the
size of the time steps, reduces the CPU time needed to solve the problem, but
will result in some diffusion being present in the front. Using still larger time

increments, adds an increasing amount of diffusion as shown in Figure 5.4.5 .

Time increments smaller than 0.01 may be used to obtain a slightly more
accurate approximation of the solution, but will require a great deal more
computation time (see Figure 5.4.6 and Table 5.4.3). The largest time incre-
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ment yielding a satisfactory solution is At = 0.01 . For this case the adaptive

grid algorithm is 3.26 times faster than the tridiagonal method.
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Table 5.4.2a: Test Problem #4 Results, Variations in ¢

where log(toler) = —4, and At = 0.01

AD TRID AD TRID AD TRID
log average average CPU CPU residual residual
€ WU per WU per time time
time step time step sec sec |F — Lul| |F' = Lul| |
-9 732 7.04 0.42 30.37 3.81E-4 2.26E-4
-8 652 7.04 9.32 30.37 3.81E-4 2.26E-4
-7 570 7.04 S.88 30.37 4.08E-4 2.26E-4
-6 475 6.05 8.62 25.90 1.21E-3 S.34E-4
-5* .369 4.01 8.19 17.21 3.11E-2 1.07E-3
-4* 208 2.02 T.71 8.68 0.2097 0.1289
-3 112 1.07 7.27 4.56 0.4192 0.4165 |

Table 5.4.2b: Test Problem #4 Results, More Variations in ¢

where log(toler) = =7, and At = 0.01

AD TRID AD TRID AD TRID
log average average CPU CPU residual residual
€ WU per WU per time time
time step time step sec |  sec [|FF — Lul| |FF — Lul|
-9 132 7.04 0.52 30.37 3.81E-4 2.26E-4
-8 .652 7.04 9.22 30.37 3.81E-4 2.26E-4
-7 570 7.04 S.90 30.37 4.08E-4 2.26E-4
-6 475 6.05 8.57 25.90 1.21E-3 8.34E-4
-5* .369 4.01 3.24 17.21 3.11E-2 1.07E-3
-4* 208 2.02 7.59 8.68 0.2007 0.1289
* front lags
85



uoryenbqy syedang ‘judwaIdUT dULY, *SA dWL], NdD :9°¥°g 2an3 g

juluraJour 2wl T,

S0 0] €0 <0 10 0°0

T Ll 1 T L T T L T — T T L] L L T L] L] L] — T L] L) L L) L T 4 L - T LA § T LJ T T T T — T T T T L4 T L{ T LB .Hlm

i POYISIN PHD danpdepy )

o -t

s ]

- H40+3 A o
Ty oo
c

i fan

| 8
R

i ©

B ®

- o

: POYIPIN [euoSerplyy, 2

. +a &

- v B - poAresqo uoisngrp a[qiSif3ou

- ® - 1Juoy jo uoIsnjjip

< 3 'y " " N 3 2 1. 4 — 2 I N 2 3 ) 1 3 — ------ PR W ¥ — 44 T S 1 n 1 1 ~ 3 2 2 2 n I 3 2 NI*I@

_ ) _ _ _ . _ _ | Likd



Table 5.4.3: Test Problem #4 Results, Time Increment Varied

where log(e) = -8

AD TRID AD TRID AD TRID
At average average CPU CPU residual residual
WU per WU per time time
sec time step time step sec sec |F' — Lul \F' — Lu|| |
0.005 0.549 6.02 1747 | 5031 | 2.80E-4 9.15E-5 |
0.01 0.652 7.04 032 | 3037 | 3.81E-4 2.96E-4 |
0.02* 0.822 9.04 501 | 2002 | 3.62E-4 143E-4 |
0.04* 1.09 10.12 272 | 1206 | 2.80E-4 2.66E-4
0.0625* 1.34 1.1 100 | 856 | 26SE-4 2.46E-4 |
0.10* 1.61 12.30 130 | 5094 | 4.36E4 2.37E-4 |
0.20" 2.02 14.40 075 | 352 | 0.63E-4 142E-4 |
0.40* 2.03 14.00 0.32 1.74 9.30E-2 1.57E-4

* diffusion of front
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5.5 Results for Test Problem #35

The fifth test problem is the nonlinear Richards’ equation (presented in
Chapter 4.5) modelling one-dimensional water flow in an unsaturated soil.
This problem is solved using an adaptive grid algorithm and the tridiagonal
method, each of which emplovs the use of Picard iterations to handle the
nonlinearities. As with the previous problem, the adaptive grid and tridiag-
onal solutions are compared with each other, since the analytical solution to
the problem is not known. To get an equitable comparison between the two
methods, the Picard iterations for the tridiagonal scheme are continued until
the residual is the same as that found by the adaptive grid program. For the
adaptive grid scheme, the problem is discretized such that the finest grid con-
tains either 481 nodes, or 641 nodes. The total number of grid levels used, as
well as the number of nodes on the coarsest grid, are varied in order to see how
they affect the solution and computation time. The tridiagonal method solves
this problem on uniform grids counsisting of 481 nodes, and 641 nodes. Both
algorithms solve the problem up to times of 5, 15, and 35 days. The resulting
solutions are plotted in Figure 5.5.1 . Additionally, various time increments
are used in solving test problem #5, up to times of 3, 157, and 35 days.

A problem arising with the nonlinear tridiagonal algorithm is one in which
the low frequency errors present in the solution cause the relaxation sweeps

(iterations) to become very inefficient. This leads to a situation where the
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residual remains almost constant between iterations, and may even converge
on a value greater than the one desired, resulting in an infinite loop. To detect
such an occurrence, the parameter ‘tolerce’ is introduced into the tridiagonal
algorithm and compared against the change (since the previous iteration) in
the residual norm Ae. As long as Ae > tolerce, the algorithm proceeds as
usual. When Ae < tolerce, the Picard iterations are halted (as if the residual
had converged to within the desired accuracy) and the tridiagonal algorithm
proceeds to solve for the next time step. Doing this, avoids creating an infinite
loop, but tends to ‘lock in’ a low frequency error into the solution, which
consequently gets propagated onto the remaining time steps.

The water infiltration problem is solved up to a time of 5 days, using
a time increment of 0.10 day, with both the adaptive grid and tridiagonal
algorithms. Performing a mass balance shows a gain in mass of 0.104 cm H;O
(about 1.15 percent of the total mass within the domain) in the solutions found
by each algorithm. The tridiagonal method solved the problem on a 481 node
grid in 309.95 CPU seconds. The adaptive grid program solves the problem
using several grid levels, such that the finest grid contains 481 nodes. The
program was run several fimes, as the number of grid levels, and convergence
criteria (€) were varied. For thoese cases, the adaptive grid method solves the
problem anywhere from 66.14 to 142.02 CPU seconds, depending upon the

value of € and the number of grid levels used (see Table 5.5.1).
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In each case, the adaptive grid method obtained a residual value of 5.614 x
1073, The tridiagonal scheme attempted to obtain a solution of equal accuracy
( by using thic residual value to obtained by the adaptive grid method as the
convergence criteria), but only managed to get a residual of 1.615 x 10™*. This
occurred because low frequency errors in the solution led to very inefficient
relaxation sweeps which converged on a residual value greater than the one
sought. So for this case, the adaptive grid algorithm outperformed the tridi-
agonal scheme, solving the problem 2.23 to 4.69 times faster, while obtaining
a residual value approximately half an order of magnitude less than that from
the tridiagonal method.

The two algorithms are also used to solve the water infiltration problem
discretized onto a grid (or finest grid) with 641 nodes, up to a time of 5 days,
using a time increment of 0.10 day. In finding the solution, both algorithms
produce a mass gain of 0.078 cim1 H>O or about 0.86 percent of the total mass.
The program using the tridiagonal method solved this problem in 379.26 CPU
scconds with a residual value of 1.365x107%. The adaptive grid method obtains
the solution in 80.50 to 194.77 CPU seconds (about 1.95 to 4.71 times faster
than the tridiagonal method), while obtaining a residual value of 5.732 x 1075

(see Table 5.5.2).
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Table 5.5.2: Test Problem #5, Results ; 641 Fine Node Grid*

where log(toler) = =5, time = 5 days, and At = 0.10

# of # nodes AG TRID AG TRID

grid coarsest cPU CPU residual residual log

levels grid tinie time I|FF — Lul| |FF — Lul| €

sec sec

3 161 194.77 1 379.26 5.732E-5 1.365E-4 -6
4 81 124.87 379.26 5.732E-5 1.365E-4 -6
5 41 111.88 379.26 5.732E-5 1.365E-4 -6
6 21 §9.14 | 379.26 5.732E-5 1.365E-4 -6
7 11 80.50** 379.26 5.732E-5 1.365E-4 -6
3 161 190.99 379.26 5.732E-5 1.365E-4 -8
4 81 125.51 379.26 5.732E-5 1.365E-4 -8
5 41 08.52 379.26 5.732E-5 1.365E-4 -8
6 21 87.76 379.26 5.732E-5 1.365E-4 -8
7 11 83.21 | 379.26 5.732E-5 1.365E-4 S
3 161 190.30 379.26 | 5.732E-5 1.365E-4 -9
4 81 125.82 379.26 | 5.732E-5 1.365E-4 -9
5 41 08.96 379.26 5.7132E-5 1.365E-4 -9
6 21 87.68 379.26 5.732E-5 1.365E-4 -9
7 11 83.78 379.26 5.732E-5 1.365E-4 -9

* tridiagonal and adaptive grid algorithms each yield mass gains of 0.0784 cm H,O

** adaptive grid mass loss = 0.0112 cm H,O
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For the adaptive grid algorithm, the number of grid levels and the conver-
gence criteria are varied in order to see what effect they have on the solution
and computation time. These cases are presented in Table 5.5.1 and Table
5.5.2 . Increasing the number of grid levels results in a decrease of the compu-
tation time required to solve the problem, yet it has no effect on the residual
norm. Variations in the convergence criteria also have no effect on the residual
norm. Additionally, the time nceded to solve the problem remains approxi-
matcly constant as the convergence criteria is varied. For example using 6 grid
levels and a finest grid of 641 nodes, the problem is solved in 89.14 seconds
with e = 107, Decreasing the convergence criteria to e = 1072 results in a
requirement of 87.76 CPU seconds to solve the problem, a further reduction
to € = 1072 results in a time requirement of 87.68 CPU seconds.

In solving problem #5 out to 15 days using At = 0.10 day, the perfor-
mance of the adaptive grid method degrades as more computation time is
required per time step, but it is still the faster of the two. The degradation in
performance worsens as the problem is solved up to a time of 35 days while
using the same time increment. With the adaptive grid algorithm, the adap-
tive subdomains appear near the fiont and over those portions of the domain
behind the front. The extent of iéhre subgrids used to solve the problem at a
time of 15 days is shown in Figur'er 5.5.2. As the solution progresses in time,

the location of the front penctrates deeper and deeper into the domain,
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and coﬁsequcntly allows for the subdomains to cover larger portions of the
domain, resulting in a slowing of the algorithm. For example, problem #35 is
solved on a 481 node grid, using a time increment of 0.20 day. The adaptive
grid method obtains a solution for a time of 5 days, 5.05 times faster than
the tridiagonal scheme. In solving the problem out to 15 days, the adaptive
grid }nethod is 3.57 times faster. And finally in solving the problem out to 35
days, the performance of the adaptive grid degrades even further as it is only
2.60 times faster than the tridiagonal scheme.

The Richards’ equation is solved (up to times of 5, 15, and 35 days) several
times with both programs as the time increments are increased with each new
set of computer runs. The data collected are presented in Tables 5.5.3, 5.5.4,
and 5.5.5. As the time steps are increased, errors in the mass conservation
slowly rise. Additionally, oscillations in the residual error (¥ — Lu) appear
with the use of the larger time increments (see Figures 5.5.3, 5.5.4, and 5.5.5).
The spikes appearing in Figures 5’.53‘3 and 5.5.4 occur at most subdomain
boundaries. The magnitude of the spikes generally decreases as smaller time
steps are used. These spikes occur since Dirichlet conditions are applied to
the subdomain boundaries (which are in the interior of the domain and do not
correspond to the actual boundaries of the problem), and so, the flux across
these boundaries is not considered in the current numerical model. This leads

to the introduction of the errors appearing at the subdomain boundaries.
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Table 5.5.3: Test Problem #5, Results for Time = 5 days

where log(e,) = —8 and log(toler) = =5

AG TRID AG TRID AG TRID
residual residual CPU CPU mass mass At
| FF — Lul| |FF — Luj| time time gain gain
sec sec cm H,O cm H,O day
for 6 grid levels and 481 nodes on finest grid "
1.05E-5 3.50E-5 254.0 751.8 8.66E-3 0.1040 0.02 |
2.80E-5 8.50E-5 116.9 403.6 0.1041 0.1041 0.05
5.61E-5 1.62E-4 677 | 3100 | 0.1042 0.1042 | 010 |
1.25E-4 2.95E-4 41.0 206.9 0.1045 0.1045 0.20
3.93E-4 6.53E-4 27.8 153.2 0.1057 0.1058 | 0.50
6.15E-4 8.20E-4 30.2 106.7 0.1051 0.1052 0.59*
ok 9.51E-4 o 95.76 ok 0.1064 0.70*
1.18E-3 82.43 0.1065 0.80*
1.60E-3 76.13 0.1056 | 0.90* |
1.56E-3 82.55 0.1061 0.92*
for 7 grid levels and 641 nodes on finest grid B
1.O7TE-5 3.27E-5 321.05 1037.2 0.0424 0.0783 0.02
2.72E-5 7.90E-5 147.85 625.42 0.0783 0.0783 0.05
5.73E-5 1.48E-4 83.21 496.00 0.0785 0.0784 0.10
1.22E-4 2.66E-4 50.65 280.43 0.0787 0.0787 0.20
3.90E-4 5.94E-4 30.24 176.99 0.0797 0.0798 0.50 |
6.30E-4 7.88E-4 33.53 146.31 0.0790 0.0791 0.58*

* error in location of front, front lags

** numerical instabilities resulting in math overflows
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Table 5.5.4: Test Problem #5, Results for Time = 15 days

where log(e,) = —8 and log(toler) = =5

AG 'TRID AG TRID AG TRID
residual residual cPuU CPU mass mass At
|FF — Lul| |[F — Lul| time time gain gain
: sec sec cm H,O cm H,O day
for 6 grid levels and 481 nodes on finest grid
7.02E-6 1.51E-4 297.40 1265.8 0.109 0.109 0.10
1.49E-5 2.65E-4 202.30 721.58 0.109 0.109 0.20 N
2.37E-5 0.04E-4 | 14547 | 511.39 | 0.111 0.111 | 0.30
3.83E-5 4.50E-4 153.31 691.82 0.111 0.084 0.57*
** 5.80E-4 * 434.96 ** 0.111 | 0.60*
6.40E-4 448.88 0.112 0.70*
1.56E-3 82.55 0.106 0.80*
for 7 grid levels and 641 nodes on finest grid
8.83E-6 1.35E-4 301.22 1552.7 0.082 0.082 0.10
1.78E-5 2.36E-4 246.01 | 10754 | 0.082 0.082 | 0.20
2.57E-5 4.57E-4 167.51 | 717.07 | 0.083 0.083 | 050 |
4.40E-5 5.06E-4 173.80 707.37 0.082 0.082 0.58*

* error in location of front, front lags

** numerical instabilities resulting in math overflows
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Table 5.5.5: Test Problem #35, Results for Time = 35 days

where log(e,) = —8 and log(toler) = =5

AG TRID AG TRID AG TRID
residual residual CPU CPU mass mass At
I|F — Lul| |F" — Lul| time time gain gain
sec sec cm H:O cm H,O -.dL
for 6 grid levels and 481 nodes on finest grid
1.11E-5 1.50E-4 1021.1 22421 0.109 0.109 0.10
247E-5 2.66E-4 656.53 1705.6 0.109 0.109 0.20 :
1.13E-4 4.57E-4 535.42 1711.3 0.110 0.083 0.50
6.11E-5 5.66E-4 575.53 1277.5 0.111 0.111 0.57*
*x 2.31E-3 o 1439.4 *x 0.111 0.60*
for 7 grid levels and 641 nodes on finest grid o ]
8.12E-5 2.36E-4 §99.81 2535.3 0.082 0.082 0.20
1.84E-4 4.57E-4  643.53 1721.8 0.083 0.083 0.50 |
9.23E-5 5.06E-4 711.81 2480.8 0.084 0.083 0.58*

* error in location of front, front lags

** numerical instabilities resulting in math overflows
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For the adaptive grid method, using time steps larger than 0.58 day results
in math overflows. For the tridiagonal scheme, the overflows occur at much
larger time increments. Yet for both algorithms, the computed location of
the front begins to lag behind its actual location for large time steps which
do not induce math overflows. The lagging front becomes apparent for time

increments larger than 0.50 day for both algorithms.

As with the previous problem, the size of the time increment is impor-
tant. For this problem, time increments larger than 0.50 day will either yield
solutions in which the front lags behind its actual location or produce math
overflows. Time steps smaller than 0.50 day will generally result in solutions
with a well defined and properly located front. While the use of smaller and
smaller time increments will give an increasingly accurate solution, it 1s not
without cost. A reduction in the size of the time step can significantly increase
the computation time required to solve the proBlem, as is shown in Figures

5.5.6, 5.5.7, and 5.5.8 .

The tridiagonal method used to solve the Richards’ equation used the
adaptive grid residual norm, found from the finest grid level at the final time
step, as its convergence criteria. As before, the tridiagonal program was mod-
ified such that the adaptive grid residual norm from each time step is used as
the convergence criteria for the corresponding time increments. This change
resulted in a slight improvement in the performance of the direct solution
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method (sec Table 5.5.6), with the tridiagonal program running about 1.1 to

1.2 times faster than before.
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Table 5.5.6: Results For the Alternate Tridiagonal Method

where log(e,) = —8 and log(toler) = =3
former* alt** former* alt** speed
Time At mass mass CPU CPU up
gain gain time time
day sec em HoO | em H,O sec sec ]
5 0.5 | .1057 1055 153.2 | 1243 | 1.232 |
5 0.2 1045 1038 206.9 204.2 1.013
5 0.1 1042 .1032 310.0 250.0 1.240
15 0.5 1110 1103 511.1 434.6 1.176
35 0.2 1090 1083 1705.6 1552.1 1.099

* original tridiagonal solver; convergence criteria constant for all time increments

** alternate tridiagonal solver; convergence criteria varies with time steps
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The purpose of this project is to investigate the use of the adaptive grid
and multigrid methods for the fast and efficient solution of one-dimensional

problems, and apply the most promising of the methods toward finding the

The adaptive grid and multigrid programs were first applied to the so-
lution of linear one-dimensional problems. Test problem #1, an ordinary
differential equation, is designed such that it contains both low and high fre-
quency terms in its solution. In solving this problem, the tridiagonal and
multigrid methods easily resolve both the high and low frequency terms, while
the Gauss-Seidel method had to use a very large number of iterations to re-
solve the low frequency terms. For the transient cases (test problems #2 and
#3), the performance of the multigrid method improves as steady state is
approached. For these problems, the adaptive grid and multigrid programs
are significantly faster than the Gauss-Seidel method, with the adaptive grid
scheme running about 1.5 to 4 times faster than the multigrid method. While
the adaptive grid algorithm is tliefastest of the iterative methods, it is still
about 3 times slower than the tridiagonal method.
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In order to solve the nonlinear problems, Picard iterations are incorpo-
rated into the adaptive grid and tridiagonal programs. These two algorithms
were used in solving the Burgers’ equation. Both methods obtained solutions
of similar accuracy, with the adaptive grid scheme finding the solution 3.26
times faster than the tridiagonal method. In solving the Richards’ equation,
the tridiagonal scheme has problems eliminating low frequency errors, and so
is unable to achieve the accuracy obtained by the adaptive grid method. For
this problem, the adaptive grid program is approximately 2 to 4.7 times faster
than the tridiagonal scheme. For both nonlinear problems, the largest time

increment yielding a satisfactory solution is the same for the two algorithms.

The performance of the adaptive grid and multigrid algorithms generally
improved as the number of grid levels were increased. The adaptive grid
method shows lots of promise toward the solution of nonlinear one-dimensional
problems, despite being outperformed by the tridiagonal method when solving
linear problems. For the nonlinear equations solved, the adaptive grid scheme
1s about 3 times faster than the iterative tridiagonal method. The adaptive
grid program can easily smooth out the low and high frequency errors present
in the approximation, even when these errors pose a problem to the iterative
tridiagonal scheme. Thus in some cases, such as for the Richards’ equation,
the adaptive grid algorithm computes a more accurate solution than does the
tridiagonal method. With problems which have moving fronts penetrating
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into undisturbed portions of the domain, the performance of the adaptive
grid scheme degrades as the solution progresses in time, but still remains
faster than the tridiagonal method.

In Summary, (see Table 6.1.1) for the linear problems presented in this
work, the adaptive and multigrid programs performed about the same, with
the adaptive grid scheme being slightly faster than the multigrid method.
Both the adaptive grid and multigrid programs easily outperformed the Gauss-
Seidel method, but were approximately three to four times slower than the
direct solver (tridiagonal method). For the solution of the nonlinear problems,
Burgers’ equation and Richards’ equation, the situation reversed itself with
the adaptive grid program obtaining the solutions about three times faster

than the tridiagonal method incorporating Picard iterations.
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6.2 Recommendations

The adaptive grid method performs well in finding the solution to the
nonlinear problems considered liere. Particularly when it is applied to solving
the water content formulation of the Richards’ equation. Further consideration
of this method (and its derivatives) for the solution of the Richards’ equation

and other nonlinear problems is suggested.

Certain alterations to the adaptive grid program should be considered in
order to improve the efficiency and accuracy of the algorithm. Currently, the
nonlinear adaptive grid algorithim uses a series of finer and finer grids to solve
a problem, but, it does not allow for any cycling between the coarser and finer
grids. So, when the relaxation sweeps on a finer grid level become ineflicient
(due to the presence of low frequency errors), the algorithm does not seek to
go to a coarser grid on which these errors can be easily reduced. Therefore, it
1s recommended that the adaptive grid and multigrid methods be combined
so as to allow for a cycling of the solution process between the coarse and fine

grids.

In the current adaptive grid algorithm (as well as with the tridiagonal
method employing Picard iterations) small errors in mass balance are present.
Both smaller time increments and denser grids containing more nodes may
be used to improve the mass balance and the accuracy of the solution, but
at the added expense of an increase in computational work (work units) and
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computation time, which can be very significant. The adaptive grid method
may offer a way to improve the mass balance at a minimal cost. Part of the
problem lies with the maintenance of a proper mass balance in the approxima-
tion used on the various adaptive grids. The adaptive grid method presented
uses Dirichlet conditions for the houndaries of the adaptive subdomains. The
one exception to this rule applies to the subdomain boundaries corresponding
to the actual boundary of the problem; in this case the actual boundary con-
dition (as posed by the problem of interest) is used. The use of the Dirichlet
condition for subdomain boundaries neglects to consider any flux entering or
leaving the subdomain. This increases errors in the mass balance and gives
rise to the appearance of an error (a spike) in the residual at the subdomain
boundary, which can trigger the creation of an additional subdomain at a
finer grid level. As a corrective step, Neumann conditions (or Robins condi-
tions), which specify the value of the flux at a boundary, may be useful at the
subdomain boundaries. Doing this will improve the maintenance of a proper
mass balance, and either reduce or eliminate the spike in the residual error.
Elimination of the spike i1s important, as the spike may result in the creation

of additional, perhaps unnecessary subdomains.

As the program proceeds to step through time, the final solution at each
time step is used as an the initial estimate for the next time step. While
this works rather well, it introduces errors into the initial approximation for
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the new time step as a proper mass balance is not maintained from one time
increment to the next. These errors may induce additional computational
work. Providing the new time step with a more accurate estimate of the end
time step solution (with a correct mass balance) may serve to enhance the
performance of the algorithm. For problems with steep moving fronts (such
as for the Burgers’ and Richarvds’ erqurzrl.trions solved in this study), the velocity
of the front may be calculated from previous time steps and used to provide

a better estimate of the solution to the next time increment.
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